SOURCE PARAMETERS OF THE 26 APRIL 2007 BAM EARTHQUAKE OBTAINED BY THE NEAR FIELD ACCELEROMETERS DATA

A. Azadmanesh-1; M.R. Gheitanchi-1; A.R. Babaei Mahani-1

Address: Tehran University, Institute of Geophysics, P.O.Box 14155-6466, Kargar Shomali Street, Tehran, Iran

E-mail: Azadmanesh@ut.ac.ir

Key Words: Bam earthquake, Digital accelerograms Data, Ground motion parameters, epicentral location

ABSTRACT After 26 December 2003 hundreds of aftershocks have occurred in Bam. There are 27 recorded earthquakes with the magnitude with 5.1 >M >3.8 obtained from USGS. The last event with M= 4.9 (NEIC) was on 26 April 2007. In this study, we calculated the ground motion parameters of the last event using digital accelerograms Data of Building and Housing Research Center (BHRC) by using Seismosignal and Sac softwares.

These parameters listed in Table 2. We determined the location of the epicenter, our motivation of these computations was the determination deference of epicentral location with Minimum and Maximum 20, 50 km respectively. The occurrence of strong earthquake such as the 26 April 2007 indicates the Bam region is still seismically active.

INTRODUCTION

On 26 December 2003 at 05:26LT (01:26GMT), a catastrophic Earthquake Mw 6.6, seismic moment (6 – 9 ×10^{18} N m) struck the city of Bam in the Kerman province of southeast Iran (figure1). The intense shaking in the city caused the complete collapse of nearly every building in the central parts of the city including many of the newer buildings, killing about 40000 people officially. The city lies to the east of the Nyband – Gowk – Sarvestan fault system and on which several large earthquake have occurred over the past 23 years [Berberian et al., 1984; Berberian and Qorashi, 1994; Berberian et al., 2001]. There are no recorded historical earthquakes at Bam. Most of the citadel of Arg-e-Bam, one of world heritage sites inscribed by UNESCO, which was constructed by mud brick about 2000 years ago destroyed in this earthquake.

Four large earthquakes (M>6) since 1981 have occurred near the Gowk fault zone [Berberian et al., 1984, 2001]. The Gowk fault zone, a predominantly right–lateral strike–slip zone that extend from 50 km west of Bam northward [Walker and Jackson, 2002], has also been associated with several large historical earthquakes [Ambraseys and Melville, 1982; Berberian and Yeats, 1999].

After the mainshock, hundreds of aftershocks including 27 events larger than 3.8 (USGS) have occurred in this region. In this study, we calculated the location of the epicenter and other parameters of the last event (with Mw 5) using digital accelograms Data of Building and Housing Research Center (BHRC). We obtained the seismic moment as Mo = 3.6×10^{23} Dyne- cm, and the moment magnitude as M_w = 5. The results of this study are in agreement with the other computation results.
DATA ANALYSES

There are 6 accelerogram stations in and around the city of Bam which were installed by BHRC. Using the Seismosignal and SAC softwares, we plotted all of the three components of the accelerograms, and then we measured ts-tp, Epicentral distance (R) and PGA for each record. These parameters were listed in Table1. After baseline correction and filtering of the accelerograms, we plotted Fourier Spectrum of accelerations. By using these plots we obtained corner frequency ($f_c$) and flat portion spectrum (K) of the Fourier Spectrum. Reading of dash line quantities (Table1) was difficult. We showed an example of accelerogram in figure 3 and two examples of Fourier Spectrum in figures 2 and 4. We used the acceleration spectrum of S-wave, recorded on horizontal components in SAC software.

Fig2. Fourier spectrum of Bam station.

Fig3. Three components of Baravat accelerogram station.

Fig2. Fourier spectrum of Abareq station.
To estimate $M_0$ from acceleration spectrum, first we must estimate $K$, then we compute $\Omega_0$ from $\Omega_0(2\pi f)^2 = K$. Finally, we could reach to $M_0$ by equation 1 [J. Shoja-Taheri, S. Naserieh, and A.H. Ghafoorian-Nasab 2005]. Each parameter must be in SI unit which lead to $M_0$ in N.m, but to determine $M_w$ in equation 2, $M_0$ in dyn.cm is required. $M_0$ (dyn.cm) = $M_0$ (N.m). 1e+007

$$M_0 = \frac{4\pi \rho \beta^3 \Omega_0}{\Re G F V G (R)}$$  \hspace{1cm} (1) \\
$$M_w = 0.667 M_0 - 10.7$$  \hspace{1cm} (2)  \\

[lay, T. and T.C. Wallace, (1995)]

$\Omega_0$ (m.sec) Long period part of spectrum(before $f_c$);
F = 2  Free surface amplification;
$V$ = 1/$\sqrt{2}$ a factor for correction of energy partitioning on two horizontal components;
$\rho$ = 2700 kg/m$^3$ Density;
$\beta$ = 3000 m/s  S- wave velocity;
$\Re G$ = 0.55  Radiation pattern;
$G(R)$ (m) Geometrical spreading correction ;

$$G(R) = \begin{cases} R^{-1} , & R \leq 100 Km \\ (100 \times R)^{-\frac{1}{2}} , & R > 100 Km \end{cases}$$

R(m)  Epicentral distance; all of the distances in this study are less of 100 km so we used from $G(R) = R^{-1}$.

We calculated Average of corner frequency ($f_c$) of three components and flat portion spectrum (K), then substituted them in equation 1.

We obtained $M_0$ and $M_w$ for each station (Table1), then we Averaged these quantities and obtained $M_0 = 3.6 \times 10^{23}$, and $M_w = 5$; the results are consistent with the computation results.
Table-1. Ground motion parameters of 26 April 2007 Bam earthquake

<table>
<thead>
<tr>
<th>Station</th>
<th>st. coordinates</th>
<th>P.G.A (g)</th>
<th>Corner freq(Hz)</th>
<th>k</th>
<th>ts-tp (s)</th>
<th>R(km)</th>
<th>Mo(dyn.cm)</th>
<th>Mw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat  Long</td>
<td>L  V  T</td>
<td>L  V  T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAM</td>
<td>29.079 58.353</td>
<td>0.068 0.062 0.061</td>
<td>3.25 3.10 1.45</td>
<td>0.5</td>
<td>2.15</td>
<td>17.2</td>
<td>3.88X10²³</td>
<td>5.03</td>
</tr>
<tr>
<td>QOTB ABAD</td>
<td>28.883 58.483</td>
<td>0.042 0.013 0.034</td>
<td>- 1.96 -</td>
<td>0.1</td>
<td>5.06</td>
<td>40.48</td>
<td>3.27X10²³</td>
<td>4.98</td>
</tr>
<tr>
<td>BARAVAT</td>
<td>29.01 58.402</td>
<td>0.0101 0.138 0.185</td>
<td>- 3.125 2.9</td>
<td>0.7</td>
<td>2.27</td>
<td>18.16</td>
<td>4.66X10²³</td>
<td>5.08</td>
</tr>
<tr>
<td>ABAREQ</td>
<td>29.347 57.94</td>
<td>0.027 0.018 0.035</td>
<td>5.1 - -</td>
<td>0.3</td>
<td>7.3</td>
<td>58.4</td>
<td>2.088X10²³</td>
<td>4.85</td>
</tr>
<tr>
<td>M.A.MASKUN</td>
<td>29.908 57.888</td>
<td>0.019 0.0068 0.0075</td>
<td>1.62 1.66 1.7</td>
<td>0.1</td>
<td>7</td>
<td>56</td>
<td>6.299X10²³</td>
<td>5.17</td>
</tr>
<tr>
<td>POSHT-RuD</td>
<td>29.123 58.381</td>
<td>0.0773 0.0776 0.0693</td>
<td>4 - 3.6</td>
<td>0.7</td>
<td>1.7</td>
<td>13.6</td>
<td>14.16X10²³</td>
<td>4.87</td>
</tr>
</tbody>
</table>

THE EPICENTERAL LOCATION

We obtained ts-tp from accelerographs using six accelerogram stations and determined epicentral distance(R) using R (km) = 8(t_s - t_p) (Table1). We converted coordinates of stations to metric (UTM); then, we plotted 6 circles with radius = R, and centers equal to stations coordinates; finally, we determined the fittest confluence point in confluence surface. We converted the obtained point coordinate to degree again. We selected a map of region from Google earth correctly and add to ArcGIS software. We plotted this location and the other locations on map; Figure 3 shows these locations on region map. The other seismological Agencies are: Institute of geophysics Tehran University (IGTU), International Institute of Earthquake Engineering and seismology (IIEES) and National Earthquake Information Center (NEIC). Table2 shows the magnitude and epicenter located by different organizations. Geology and Tectonic studies and the field observations show that the IGTU and NEIC have less accuracy; only few walls of gardens collapsed in villages northeast of Bam. The closest seismograph station of IGTU is about 500 km far from Bam and NEIC does not have any station in Iran; the closest station of IIEES has 200 km distance, but the distances of accelerogram station are 13 to 59 Km. These results imply that the location of this study is reliable and has more accuracy.

Figure-3. The location of 3/26/ 2007 Bam earthquake by: NEIC, IGTU, IIEES and this study.
DISSCOSSION AND COCLUSION

We calculated seismic moment (Mo) and moment magnitude (Mw) to be $3.6 \times 10^{16}$ N.m and 5 respectively and the other ground motion parameters that are listed in Table1, by using digital accelerograms Data of Building and Housing Research Center (BHRC), using the Seismosignal and Sac softwares. We located the epicenter by using recorded digital accelerograms. The epicentral location obtained in this study is consistent with the field observations and the geological evidences. The occurrence of strong earthquake such as the 26 April 2007 indicates the Bam region is still seismically active, and the occurrence of other destructive earthquakes around the epicentral area of the 2003 Bam earthquake in future is not out of expectation.

ACKNOWLEDGMENTS

We thank Building and Housing Research Center (BHRC) for sharing the digital accelerogram Data and the noble people of Bam city for assistance in giving and presenting their observations.

REFERENCES


J. Shoja-Taheri, S. Naserieh, A.H. Ghafoorian-Nasab. The 2003 Bam, Iran, Earthquake: An Interpretation of the Strong Motion Records Earthquake Spectra -- December 2005 -- Volume 21, Issue S1,

Walker, R., 2005, Surface ruptures and building damage of the 2003 Bam, Iran,